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Abstract

This paper investigates the in-plane linear dynamic behaviour of multi-stepped and multi-damaged circular arches under

different boundary conditions. Cracked cross-sections are modelled as massless elastic rotational hinges. In damaged

configuration, cracks can be located both at the interface between two adjacent portions as well as inside the portion itself.

For each arch portion bounded by two cracks, the differential equations of motion have been established considering axial

extension, transverse shear effects and rotatory inertia. The equilibrium equations of arch portions are combined in the

coupled fundamental system in terms of radial displacement, tangential displacement and rotation. Analytical and

numerical solutions for multi-stepped arches, in undamaged as well as in damaged configurations, are proposed. The

analytical solution is based on the Euler characteristic exponent procedure involving the roots of characteristic

polynomials, while the numerical method is focused on the Generalized Differential Quadrature (GDQ) method and the

Generalized Differential Quadrature Element (GDQE) technique. Numerical results are shown in terms of the first 10

analytical and numerical frequencies of multi-stepped and multi-damaged arches with different boundary conditions.

Finally, convergence and stability characteristics of the GDQE procedure are investigated. The convergence rate of the

natural frequencies is shown to be very fast and the stability of the numerical procedure is very good.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of the behaviour of arch structures has attracted considerable attention because of the use of
this structural element in a variety of engineering applications. The first studies on this topic date back to the
work of Den Hartog [1] and Love [2], but the arch problem is the subject of a number of investigations [3–7] in
the present day, too. They involve both theoretical formulations [3–5] and practical applications [6,7].

Following different approaches, many articles involving static and dynamic analyses of arch structures have
been published over the past years. Several investigators have carried out finite-element analyses by using
various types of curved beam elements. To this end, one may mention Perty and Fleischer [8], Ahmed [9],
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Prathap [10], Ashwell and Gallagher [11], Babu and Prathap [12], Cook et al. [13], Dawe [14,15], among
others.

An examination of the quality of displacement trial functions in quadratic isoparametric representation of
an arch was made by Morley [16], Tessler and Spiridigliozzi [17], Stolarski and Chiang [18]. The boundary-
value problem of linear elastic equilibrium for circular arches was formulated in both standard and mixed
variational forms by Reddy and Volpi [19]. The existence and the uniqueness of solutions to these equivalent
problems were established and the corresponding discrete problems were studied. One of the most accurate
elements published so far is the one developed by Friedman and Kosmatka [20]. Their solution may be
expressed as trigonometric functions in terms of 18 constants. Numerical examples were performed to
demonstrate the element convergence to results obtained from a shear deformable straight beam when the
curved beam becomes shallower.

It is worth noting that most of the above literature is dedicated to understanding and overcoming
pathologies exhibited by FE models. The highly undesirable situation of numerical deficiency is broadly
referred to the shear/membrane locking. Now, it is well known that there are four common approaches
to dealing with both membrane and shear locking [21]. It is beyond the aim of this paper to
present a comprehensive state of the art of curved beam elements. It should be noted that a review article
[22] of more than 10 years ago devoted to the subject of the dynamics of arch-type structures enumerated 407
references.

As far as the research line dealing with analytical solutions is concerned, some contributions have
been reported, for example, in Refs. [23–28]. Free and forced in-plane vibrations of circular arches with
both variable and uniform cross-sections have been investigated. Exact solutions for the free and
forced vibrations of uniform Bernoulli–Euler arches can be found in Refs. [23,24]. The closed-form
solution is used for circular arches with stepped cross-sections and is applied to obtain an approxi-
mate solution for arches with non-uniform cross-sections in Ref. [25]. Exact and approximate results for
the first 10 free vibration frequencies for clamped arches, double-hinged arches and cantilever arches
are compared in Ref. [26] for various opening angles. An exact solution of free in-plane vibrations of
circular arches having uniform cross-section, by considering axial extension, transverse shear and
rotatory inertia effects, is reported in Ref. [27]. An analytical solution for the determination of the
natural frequencies of continuous Timoshenko curved beam on Winkler-type elastic foundation is presented
in Ref. [28].

Very recently, a closed-form elastic solution for circular arches having uniform cross-section was obtained
by Viola et al. [29]. An original procedure for solving the fundamental system of equations was used. The
analytical solution is expressed in terms of six unknown constants that may be obtained by imposing
constraints at each end of the arch element. A finite-element formulation based on shape functions that satisfy
the homogeneous form of the governing system of equation has been developed.

The analysis of curved beams has been the subject of considerable research interest over years. Several
varieties of approaches have been employed, depending on the particular problem to solve. However, only a
few researchers have studied damaged circular arch structures [5,30,31].

All the studies on the vibration analysis of damaged arches have been confined with structures having only
one crack. Moreover, problems concerning the behaviour of stepped structural elements do not take the crack
effect into account.

The aim of this paper, thus, is to provide a contribution to the study of free harmonic vibration problem of
multi-stepped and multi-damaged arches. Each cracked cross-section is modelled as a massless, elastic
rotational hinge [32–36]. This is one of the more convenient techniques for representing the local flexibility
introduced by a crack in a structure. In the present paper, each elastic spring connects two arch portions. This
elastic hinge model allows discontinuity in rotation, which is proportional to the applied bending moment at
the cracked cross-section. Recently, more complex elastic hinge has also been used in vibrating problems
involving structural elements [37,38]. For each arch portion bounded by two cracks, the differential equations
of motion have been established, considering axial extension, transverse shear effects and rotatory inertia. In
fact, the coupled system of second-order differential equations, which represents the equilibrium equations in
terms of displacements, contains all the three aspects of the problem of the elastic equilibrium, namely
equilibrium equations, strain–displacement and constitutive relations.
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When the boundary conditions and the compatibility conditions at the cracked cross-sections of the multi-
stepped arch have been imposed, the solution of the investigated problem can be derived.

The present paper generalizes the procedure and the results obtained by Viola et al. [5], for the vibration
analysis of a uniform circular arch damaged by only one crack. In this work, we not only have more cracks,
but also an arch structure with an arbitrary number of different arch portions. In the multi-stepped arches
considered, the damage can be located inside the portions, as well as at cross-sections where two different
portions are connected.

An exact analytical method of solution and an approximate numerical one are illustrated. The analytical
solution is based on the Euler characteristic exponent procedure involving the roots of characteristic
polynomials. The numerical method is focused on the Generalized Differential Quadrature (GDQ) method
and Generalized Differential Quadrature Element (GDQE) technique. Only a few Refs. [39–50] about GDQ
and GDQE methods will be reported in this paper. More than 200 papers dealing with GDQ and GDQE
methods under consideration have been collected by the authors.
2. Statement of the problem

Consider a multi-stepped circular arch, which vibrates freely in its plane, with small oscillations around an
unstressed configuration of equilibrium. Suppose that the system is constituted by a sequence of m consecutive
portions. Each portion of the arch is characterized by a different thickness, as shown in Fig. 1. Y is the full
amplitude of the considered arch. The kinematics of the (e)th portion, e ¼ 1; . . . ;m, is completely defined by
assigning the tangential displacement uðeÞðW; tÞ, the normal displacement vðeÞðW; tÞ and the rotation angle
about the binormal axis jðeÞðW; tÞ of the angular coordinate W at a moment of time t. Taking into account
the effect of shear and axial deformations and rotatory inertia, the equations of motion can be written as
u(e) (  , t)
(  , t)�(e)

Θ

(0)=0

(2)

R

(1)

(2)

(m)

O

(e)

 (e-1)
 (e)

(m-1)

   (m) = Θ

(1) 

(e)

  (e)
   (e-1)

v (e) (  , t)

Fig. 1. Multi-stepped circular arch in undamaged configuration.
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follows [5,20,29,50]:

1

R

qN ðeÞðW; tÞ
qW

�
T ðeÞðW; tÞ

R
¼ rAðeÞ

q2uðeÞðW; tÞ
qt2

,

1

R

qT ðeÞðW; tÞ
qW

þ
N ðeÞðW; tÞ

R
¼ rAðeÞ

q2vðeÞðW; tÞ
qt2

,

1

R

qMðeÞðW; tÞ
qW

� T ðeÞðW; tÞ ¼ rI ðeÞ
q2jðeÞðW; tÞ

qt2
, ð1Þ

for W 2 ðWðe�1Þ;WðeÞÞ, t40 and e ¼ 1; . . . ;m. In the previous equations, N ðeÞðW; tÞ; T ðeÞðW; tÞ and Me W; tð Þ, denote
the axial force, the shearing force and the bending moment, respectively, acting on the (e)th portion of the
arch. Moreover, R is the radius of the arch, r is the mass per unit volume, A(e) and I(e) are the area and the
moment of inertia of the cross-section of the arch portion. The internal forces can be expressed by the
constitutive relations [5,20,29,50]:

N ðeÞðW; tÞ ¼
EAðeÞ

R

quðeÞðW; tÞ
qW

� vðeÞðW; tÞ
� �

,

T ðeÞðW; tÞ ¼
GAðeÞ

Rw
uðeÞðW; tÞ þ

qvðeÞðW; tÞ
qW

þ RjðeÞðW; tÞ
� �

,

MðeÞðW; tÞ ¼
EI ðeÞ

R

qjðeÞðW; tÞ
qW

, ð2Þ

where E, G are Young’s and shear modules, w is the shear factor.
If the arch is clamped at W ¼ 0 and Y, then the boundary conditions, for t40, take the form:

uð1Þð0; tÞ ¼ 0; uðmÞðY; tÞ ¼ 0,

vð1Þð0; tÞ ¼ 0; vðmÞðY; tÞ ¼ 0,

jð1Þð0; tÞ ¼ 0; jðmÞðY; tÞ ¼ 0, ð3Þ

if the arch is hinged at W ¼ 0 and Y, then the boundary conditions, for t40, can be expressed as,

uð1Þð0; tÞ ¼ 0; uðmÞðY; tÞ ¼ 0,

vð1Þð0; tÞ ¼ 0; vðmÞðY; tÞ ¼ 0,

Mð1Þð0; tÞ ¼ 0; M ðmÞðY; tÞ ¼ 0, ð4Þ

while if the arch is clamped at W ¼ 0 and free at W ¼ Y, then the boundary conditions, for t40, assume the
following aspect:

uð1Þð0; tÞ ¼ 0; N ðmÞðY; tÞ ¼ 0,

vð1Þð0; tÞ ¼ 0; T ðmÞðY; tÞ ¼ 0,

jð1Þð0; tÞ ¼ 0; MðmÞðY; tÞ ¼ 0. ð5Þ

Finally, the continuity and the equilibrium conditions between the (e)th and the (e+1)th arch portions at
W ¼ WðeÞ, require that:

uðeþ1ÞðWðeÞ; tÞ ¼ uðeÞðWðeÞ; tÞ,

vðeþ1ÞðWðeÞ; tÞ ¼ vðeÞðWðeÞ; tÞ,

jðeþ1ÞðWðeÞ; tÞ ¼ jðeÞðWðeÞ; tÞ,

N ðeþ1ÞðWðeÞ; tÞ ¼ N ðeÞðWðeÞ; tÞ,

T ðeþ1ÞðWðeÞ; tÞ ¼ T ðeÞðWðeÞ; tÞ,

Mðeþ1ÞðWðeÞ; tÞ ¼MðeÞðWðeÞ; tÞ, ð6Þ
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for t40 and e ¼ 1; :::;m� 1. Substituting the constitutive relations (2) in (1), the equations of motion can be
written in terms of displacement components:

EAðeÞ

R2

q
qW

quðeÞðW; tÞ
qW

� vðeÞðW; tÞ
� �

�
GAðeÞ

R2w
uðeÞðW; tÞ þ

qvðeÞðW; tÞ
qW

þ RjðeÞðW; tÞ
� �

¼ rAðeÞ
q2uðeÞðW; tÞ

qt2
,

GAðeÞ

R2w
q
qW

uðeÞðW; tÞ þ
@vðeÞðW; tÞ

@W
þ RjðeÞðW; tÞ

� �
þ

EAðeÞ

R2

quðeÞðW; tÞ
qW

� vðeÞðW; tÞ
� �

¼ rAðeÞ
q2vðeÞðW; tÞ

qt2
,

EI ðeÞ

R2

q2j ðeÞðW; tÞ

qW2
�

GAðeÞ

Rw
uðeÞðW; tÞ þ

qvðeÞðW; tÞ
qW

þ RjðeÞðW; tÞ
� �

¼ rI ðeÞ
q2jðeÞðW; tÞ

qt2
. ð7Þ

The previous expressions show that the small vibrations of the circular stepped arch are governed by a system of three
partial differential equations for each portion identified by the angular coordinates Wðe�1Þ and WðeÞ, where a coupling
takes place between tangential displacement uðeÞðW; tÞ, normal displacement vðeÞðW; tÞ and rotation j ðeÞðW; tÞ.

Suppose now that a crack appears at the cross-section of angular coordinate WðeÞ between the (e)th and the
(e+1)th arch portions, as shown in Fig. 2. Assuming that the crack always remains open during the vibration
of the arch, it can be modelled as a massless, rotational elastic spring at the damaged cross-section [34–38].
The stiffness K of the spring can be related in a precise way to the geometry of damage [30].

The equations of motion take the form (7), while the continuity conditions (6) are replaced by:

uðeþ1ÞðWðeÞ; tÞ ¼ uðeÞðWðeÞ; tÞ,

vðeþ1ÞðWðeÞ; tÞ ¼ veðWe; tÞ,

Kðjðeþ1ÞðWðeÞ; tÞ � jðeÞðWðeÞ; tÞÞ ¼M ðeÞðWðeÞ; tÞ,

N ðeþ1ÞðWðeÞ; tÞ ¼ N ðeÞðWðeÞ; tÞ,

T ðeþ1ÞðWðeÞ; tÞ ¼ T ðeÞðWðeÞ; tÞ,

Mðeþ1ÞðWðeÞ; tÞ ¼MðeÞðWðeÞ; tÞ, ð8Þ

for t40. If the crack appears at the cross-section of angular coordinate W* of the (e)th arch portion, then the
arch portion is split into two parts, as shown in Fig. 3. The corresponding equations of motions (7) can be
written separately for the two parts, ðWðe�1Þ; W�Þ and ðW�;WðeÞÞ, located on the left and on the right of the crack.
The continuity conditions of displacements and internal forces and the discontinuity of the slope of the arch
axis at the crack location W* are given by:

uðe;2ÞðW�; tÞ ¼ uðe;1ÞðW�; tÞ,

vðe;2ÞðW�; tÞ ¼ vðe;1ÞðW�; tÞ,

Kðjðe;2ÞðW�; tÞ � jðe;1ÞðW�; tÞÞ ¼M ðe;1ÞðW�; tÞ,

N ðe;2ÞðW�; tÞ ¼ N ðe;1ÞðW�; tÞ,

T ðe;2ÞðW�; tÞ ¼ T ðe;1ÞðW�; tÞ,

Mðe;2ÞðW�; tÞ ¼M ðe;1ÞðW�; tÞ, ð9Þ
(0)=0

  (1)

   (2)
(e-1)

   (e)

(m-1)

   (m)=�

(2)

(m)

(e) K

(1)

Fig. 2. Multi-stepped circular arch in damaged configuration with a crack located at the interface between two adjacent portions.
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Fig. 3. Multi-stepped circular arch in damaged configuration with a crack internal to e(th) portion.
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for t40, where the indices 1, 2 denote the left ðWðe�1Þ; W�Þ and the right ðW�;WðeÞÞ parts of the (e)th arch portion,
respectively.

Finally, it is easy to extend the study of the free vibration problem to the case of a multi-stepped arch with
an arbitrary number of cracks by arranging in a proper set, the boundary conditions (3), (4) or (5), the
continuity conditions (6) or (8) between two consecutive portions, the continuity and jump conditions (9) in
the presence of one or more cracks internal to the portions.

In the following section, multi-stepped arches in undamaged and damaged configurations will be closely
examined.

3. Analytical and numerical solutions

3.1. Exact solution

Consider first the case of a multi-stepped arch in undamaged configuration, that is, in absence of cracks.
The governing equations of free vibrations are the coupled system of partial differential equations (7), with the
suitable boundary conditions (3)–(5) in the case of clamped–clamped, hinged–hinged or clamped–free ends,
respectively, and with the continuity conditions (6). We seek solutions that are harmonic in time and whose
frequency is o; then, in each arch portion, the displacements and the rotation can be written as [5,29,50]:

uðeÞðW; tÞ ¼ U ðeÞðWÞ cos ot,

vðeÞðW; tÞ ¼ V ðeÞðWÞ cos ot,

jðeÞðW; tÞ ¼ FðeÞðWÞ cos ot, ð10Þ

for W 2 ð0;YÞ, t40, e ¼ 1; . . . ;m, where the vibration spatial amplitude values (U ðeÞðWÞ, V ðeÞðWÞ, FðeÞðWÞ) satisfy
the differential system:

EAðeÞ

R2

d2U ðeÞðWÞ

dW2
�

GAðeÞ

R2w
U ðeÞðWÞ �

EAðeÞ

R2
þ

GAðeÞ

R2w

� �
dV ðeÞðWÞ

dW
�

GAðeÞ

Rw
FðeÞðWÞ ¼ �o2rAðeÞU ðeÞðWÞ,

GAðeÞ

R2w
d2V ðeÞðWÞ

dW2
�

EAðeÞ

R2
V ðeÞðWÞ þ

EAðeÞ

R2
þ

GAðeÞ

R2w

� �
dU ðeÞðWÞ

dW
þ

GAðeÞ

Rw
dFðeÞðWÞ

dW
¼ �o2rAðeÞV ðeÞðWÞ,

EI ðeÞ

R2

d2F ðeÞðWÞ

dW2
�

GAðeÞ

w
FðeÞðWÞ �

GAðeÞ

Rw
U ðeÞðWÞ �

GAðeÞ

Rw
dV ðeÞðWÞ

dW
¼ �o2rI ðeÞFðeÞðWÞ. ð11Þ

The boundary conditions for the clamped–clamped arch:

U ð1Þð0Þ ¼ 0; U ðmÞðYÞ ¼ 0,

V ð1Þð0Þ ¼ 0; V ðmÞðYÞ ¼ 0,

Fð1Þð0Þ ¼ 0; FðmÞðYÞ ¼ 0, ð12Þ
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for the hinged–hinged arch:

U ð1Þ 0ð Þ ¼ 0; U ðmÞðYÞ ¼ 0,

V ð1Þ 0ð Þ ¼ 0; V ðmÞðYÞ ¼ 0,

dFð1Þð0Þ
dW

¼ 0;
dFðmÞðYÞ

dW
¼ 0, ð13Þ

and for the clamped–free:

U ð1Þð0Þ ¼ 0;
dU ðmÞðYÞ

dW
� V ðmÞðYÞ ¼ 0,

V ð1Þð0Þ ¼ 0; U ðmÞðYÞ þ
dV ðmÞðYÞ

dW
þ RFðmÞðYÞ ¼ 0,

Fð1Þð0Þ ¼ 0;
dFðmÞðYÞ

dW
¼ 0, ð14Þ

can be expressed in the forms presented above. Substituting Eq. (10) into Eq. (6), the continuity conditions are
expressed as:

U ðeþ1ÞðWðeÞÞ ¼ U ðeÞðWðeÞÞ,

V ðeþ1ÞðWðeÞÞ ¼ V ðeÞðWðeÞÞ,

Fðeþ1ÞðWðeÞÞ ¼ F ðeÞðWðeÞÞ,

N ðeþ1ÞðWðeÞÞ ¼ N ðeÞðWðeÞÞ,

T ðeþ1ÞðWðeÞÞ ¼ T ðeÞðWðeÞÞ,

Mðeþ1ÞðWðeÞÞ ¼MðeÞðWðeÞÞ, ð15Þ

for t40, e ¼ 1; :::;m� 1. Considering the presence of a crack, the continuity conditions (8) and (9) take the
form below, respectively:

U ðeþ1ÞðWðeÞÞ ¼ U ðeÞðWðeÞÞ,

U ðeþ1ÞðWðeÞÞ ¼ V ðeÞðWðeÞÞ,

K Fðeþ1ÞðWðeÞÞ � FðeÞðWðeÞÞ
� �

¼M ðeÞðWðeÞÞ,

N ðeþ1ÞðWðeÞÞ ¼ N ðeÞðWðeÞÞ,

T ðeþ1ÞðWðeÞÞ ¼ T ðeÞðWðeÞÞ,

M ðeþ1ÞðWðeÞÞ ¼M ðeÞðWðeÞÞ, ð16Þ

U ðe;2ÞðW�Þ ¼ U ðe;1ÞðW�Þ,

V ðe;2ÞðW�Þ ¼ V ðe;1ÞðW�Þ,

K Fðe;2ÞðW�Þ � Fðe;1ÞðW�Þ
� �

¼Mðe;1ÞðW�Þ,

N ðe;2ÞðW�Þ ¼ N ðe;1ÞðW�Þ,

T ðe;2ÞðW�Þ ¼ T ðe;1ÞðW�Þ,

M ðe;2ÞðW�Þ ¼M ðe;1ÞðW�Þ. ð17Þ

The complete primitive (U ðeÞðWÞ, V ðeÞðWÞ, FðeÞðWÞ) of system (11) takes the form [5]:

U ðeÞðWÞ;V ðeÞðWÞ;F ðeÞðWÞ
� �

¼
X6
a¼1

cðeÞa wðeÞa exp lðeÞa W
� �

, (18)
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for e ¼ 1; . . . ;m� 1, where fcðeÞa g
6
a¼1 ¼ cðeÞ is a vector of unknown constants which depend on the boundary

and continuity conditions. In Eq. (18), flðeÞa ;w
ðeÞ
a � ðw

ðeÞ
a;1;w

ðeÞ
a;2;w

ðeÞ
a;3Þg is the a(th) eigenpair of the eigenvalue

problem in terms of the W spatial variable, for the (e)th interval of the arch. Applying the Euler characteristic

exponent method, we seek solutions for system (11) having the form wðeÞa expðlðeÞa WÞ.
The six complex numbers flðeÞa g

6
a¼1, for a given index e, are the roots of the characteristic polynomials:

pðeÞðlðeÞa Þ ¼ d0e þ d1eðl
ðeÞ
a Þ

2
þ d2eðl

ðeÞ
a Þ

4
þ d3eðl

ðeÞ
a Þ

6, (19)

where

d0e ¼ EAðeÞ
GAðeÞ

w
ðAðeÞR2 þ I ðeÞÞO� EAðeÞI ðeÞ þ

GAðeÞ

w
AðeÞR2 þ I ðeÞ
� �� �

AðeÞO2 þ ðAðeÞÞ2I ðeÞO3,

d1e ¼ EAðeÞ
GAðeÞ

w
EI ðeÞ � EAðeÞ

GAðeÞ

w
AðeÞR2 � I ðeÞ
� �

þ EAðeÞI ðeÞ
� �

Oþ 2EAðeÞ þ
GAðeÞ

w

� �
AðeÞI ðeÞO2,

d2e ¼ 2EAðeÞ
GAðeÞ

w
EI ðeÞ þ EAðeÞ þ 2

GAðeÞ

w

� �
EAðeÞI ðeÞO;

d3e ¼ EAðeÞ
GAðeÞ

w
EI ðeÞ, ð20Þ

and O ¼ o2rR2. Considering that the wðeÞa eigenvector, with a ¼ 1; . . . ; 6, is proportional to the vector of
components:

w1 ¼ 1,

w2ðl
ðeÞ
a Þ ¼ �

lðeÞa ½EAðeÞððlðeÞa Þ
2
þ 1Þ þ AðeÞO�

AðeÞO� EAðeÞððlðeÞa Þ
2
þ 1Þ

,

w3ðl
ðeÞ
a Þ ¼

w

GAðeÞR
EAðeÞðlðeÞa Þ

2
�

GAðeÞ

w
þ AðeÞO

� �
� lðeÞa EAðeÞ þ

GAðeÞ

w

� �
w2ðl

ðeÞ
a Þ

� �
, ð21Þ

the characteristic polynomial can be formed for the eigenvalue problem (11), by imposing that the general
solution (18) must satisfy boundary conditions (12), (13) or (14) and the jump conditions (15), (16) or (17).
Thus, one obtains a homogeneous linear system in real constants c ¼ fcðeÞgme¼1, say, MðoÞc ¼ 0, where MðoÞ is
a 6m� 6m matrix depending on o. Natural cyclic pulsations correspond to those special o values that set the
determinant of M(o) equal to zero. In order to determine the natural pulsations of the arch as roots of the
characteristic polynomial detM(o), a numeric procedure was adopted, the essential steps of which have been
explained in Ref. [5]. Finally, for each eigenfrequency value, the vector c has been evaluated and the
corresponding mode shape has been determined.

To conclude this section, suppose now that one or more cracks appear in some cross-sections of the arch. In
that case, taking into account Eqs. (8) and (9), it is sufficient to write the proper continuity and jump
conditions and repeat the procedure described above.

3.2. GDQE technique review

The GDQ method will be used to discretize the partial space derivatives in the governing equations and in
the boundary conditions. The essence of the Differential Quadrature (DQ) method is that the partial or total
derivate of a smooth function with respect to a variable is approximated by a weighted sum of function values
at all discrete points in the direction involved by the variable under consideration. The GDQ approach was
developed by Shu [44] to improve the DQ technique [39,40] for the computation of weighting coefficients. The
weighting coefficients are not related to any special problem and only depend on the grid points and the
derivate order. In this methodology, an arbitrary grid distribution can be chosen without any limitation.
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Thus, the n(th)-order derivative of function f(W) with respect to W at a grid points Wi, can be approximated by
the GDQ approach:

dnf ðWÞ
dWn

����
W¼Wi

ffi
XN
j¼1

bðnÞij f ðWjÞ; i ¼ 1; 2; . . . ;N; (22)

where bðnÞij are the weighting coefficients of the n(th)-order derivative at the i(th) sampling points along the
domain. N is the total number of the sampling points of the grid distribution and f(Wj) are the function values
at grid points.

The weighting coefficients can be determined by the interpolation rule chosen. For the cases treated in the
present paper, Lagrange polynomial functions have been adopted.

The Lagrange interpolating polynomials can be defined by the formula:

pjðWÞ ¼
LðWÞ

ðW� WjÞL
ð1ÞðWjÞ

; j ¼ 1; . . . ;N; (23)

where

LðWÞ ¼
YN
i¼1

ðW� WiÞ; Lð1ÞðWjÞ ¼
YN

i¼1;iaj

ðWj � WiÞ. (24)

With this choice, some simple recursive formulas are available for calculating weighting coefficients [44]. For
the first-order derivative, we have:

bð1Þij ¼
Lð1ÞðWiÞ

ðWi � WjÞL
ð1ÞðWjÞ

; i; j ¼ 1; 2; . . . ;N; iaj, (25)

XN

j¼1

bð1Þij ¼ 0) bð1Þii ¼ �
XN

j¼1;jai

bð1Þij ; i; j ¼ 1; 2; :::;N; i ¼ j. (26)

For higher-order derivatives, one gets iteratively:

bðnÞij ¼ n bðn�1Þii bð1Þij �
bðn�1Þij

Wi � Wj

 !
; iaj; n ¼ 2; 3; . . . ;N� 1; i; j ¼ 1; 2; . . . ;N; (27)

XN

j¼1

bðnÞij ¼ 0) bðnÞii ¼ �
XN

j¼1;jai

bðnÞij ; i ¼ j; n ¼ 2; 3; . . . ;N� 1; i; j ¼ 1; 2; . . . ;N: (28)

The GDQ method may be used as an efficient numerical tool for solving problems which have every form of
discontinuity in geometry, material or loading at any point of the problem domain in the form of sub-domain
elements. In fact, when any form of discontinuity appears at any domain point, use of the domain
decomposition technique is needed to solve the problem by means of the GDQ method. As with the finite-
element method , the domain of a problem is first separated into a certain number of sub-domains or elements.
This operation is called domain decomposition technique. Civan and Sliepcevich [48,49] introduced the
domain decomposition technique with DQ method for the first time. Then, the GDQ discretization is carried
out on each sub-domain. The use of the GDQ method on each sub-domain, together with the use of the
domain decomposition technique, is named GDQE technique [45].

Thus, the governing differential or partial differential equations defined on each element (11), the transition
conditions on inter-element boundaries (15), (16) or (17) and the boundary conditions on the domain
boundary (12)–(14) are in discrete form after GDQE application. Assembling all the discrete fundamental
equations, the overall algebraic system can be obtained and used to solve the problem.

The governing equations of each sub-domain are the same as those of a single domain obtained before. In
addition to the external boundary conditions, the kinematical and physical compatibility should be satisfied at
the common cross-section of the two adjacent sub-domains (15)–(17). The kinematical compatibility
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conditions include the continuity of axial and radial displacements as well as rotation. The physical
compatibility conditions can only be the three continuity conditions for the bending moment, shear force and
axial force.

For the numerical computations presented in this paper, the coordinates of grid points are chosen as

WðeÞi ¼
1� cosði � 1Þ=ðN ðeÞ � 1ÞpÞ

2
ðWðeÞ � Wðe�1ÞÞ; i ¼ 1; . . . ;N ðeÞ, (29)

where ðWðeÞ � Wðe�1ÞÞ and NðeÞ are the full amplitude of the e(th) arch portion and the total number of sampling
points used to discretize it, respectively. In this work, the same number of sampling points NðeÞ ¼N for each
sub-domain ‘e’ is used. With Lagrange interpolating polynomials (23), the Chebyshev–Gauss–Lobatto
sampling point rule (29) proves efficient for numerical reasons [44], so that for such a collocation the
approximation error of dependent variables decreases as the number of nodes increases.
3.3. Numerical implementation

The numerical operations illustrated above enable one to write the equations of motion in discrete form,
transforming every space derivative into a weighted sum of node values of dependent variables applying the
GDQ procedure. Each equation is valid in a single sampling point belonging to one of the arch portions. For
the generic arch portion ‘e’ and its interior sampling points, i ¼ 2; 3; . . . ;NðeÞ � 1, the governing Eqs. (11) can
be discretized as follows:

EA
ðeÞ
i

R2

XNðeÞ
j¼1

b 2ð ÞðeÞ
ij U

ðeÞ
j �

GA
ðeÞ
i

R2w
U
ðeÞ
i �

EA
ðeÞ
i

R2
þ

GA
ðeÞ
i

R2w

 !XNðeÞ
j¼1

bð1ÞðeÞij V
ðeÞ
j �

GA
ðeÞ
i

Rw
FðeÞi ¼ �o

2rA
ðeÞ
i U

ðeÞ
i ,

GA
ðeÞ
i

R2w

XNðeÞ
j¼1

b 2ð ÞðeÞ
ij V

ðeÞ
j �

EA
ðeÞ
i

R2
V
ðeÞ
i þ

EA
ðeÞ
i

R2
þ

GA
ðeÞ
i

R2w

 !XNðeÞ
j¼1

bð1ÞðeÞij U
ðeÞ
j þ

GA
ðeÞ
i

Rw

XNðeÞ
j¼1

b 1ð ÞðeÞ
ij FðeÞj ¼ �o

2rA
ðeÞ
i V

ðeÞ
i ,

EI
ðeÞ
i

R2

XNðeÞ
j¼1

bð2ÞðeÞij FðeÞj �
GA
ðeÞ
i

w
FðeÞi �

GA
ðeÞ
i

Rw
U
ðeÞ
i �

GA
ðeÞ
i

Rw

XNðeÞ
j¼1

bð1ÞðeÞij V
ðeÞ
j ¼ �o

2rI
ðeÞ
i FðeÞi . ð30Þ

Applying the GDQ methodology, the discretized forms of the boundary conditions are given below:
�
 Clamped edge boundary condition:

U
ðeÞ
i ¼ 0; V

ðeÞ
i ¼ 0; FðeÞi ¼ 0 for i ¼ 1; e ¼ 1 or i ¼NðeÞ; e ¼ m. (31)
�
 Hinged edge boundary condition:

U
ðeÞ
i ¼ 0; V

ðeÞ
i ¼ 0;

XNðeÞ
j¼1

bð1ÞðeÞij FðeÞj ¼ 0 for i ¼ 1; e ¼ 1 or i ¼NðeÞ; e ¼ m. (32)
�
 Free edge boundary condition:

XNðeÞ
j¼1

bð1ÞðeÞij U
ðeÞ
j � V

ðeÞ
i ¼ 0;

XNðeÞ
j¼1

bð1ÞðeÞij V
ðeÞ
j þU

ðeÞ
i þ RFðeÞi ¼ 0;

XNðeÞ
j¼1

bð1ÞðeÞij FðeÞj ¼ 0

for i ¼ 1; e ¼ 1 or i ¼NðeÞ; e ¼ m. ð33Þ
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should be noted that in correspondence of each discontinuity regarding the properties of the arch, jump
It
conditions (15) must be imposed by means of the GDQ method:
U
ðeþ1Þ
1 ¼ U

ðeÞ

NðeÞ
;

EA
ðeþ1Þ
1

R

XNðeþ1Þ
j¼1

bð1Þðeþ1Þ1j U
ðeþ1Þ
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ðeþ1Þ
1

 !
¼

EA
ðeÞ

NðeÞ

R

XNðeÞ
j¼1

bð1ÞðeÞ
NðeÞj

U
ðeÞ
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ðeÞ

NðeÞ

 !
,

V
ðeþ1Þ
1 ¼ V

ðeÞ

NðeÞ
;

GA
ðeþ1Þ
1

Rw

XNðeþ1Þ
j¼1

bð1Þðeþ1Þ1j V
ðeþ1Þ
j þU

ðeþ1Þ
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 !
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V
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 !
,
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;
EI
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1

R

XNðeþ1Þ
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EI
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In presence of crack, the jump conditions (16) or (17) can be written in discrete form as

U
ðeþ1Þ
1 ¼ U

ðeÞ

NðeÞ
;
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ðeþ1Þ
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FðeÞj . ð35Þ

Applying the DQ procedure, the whole system of differential equations can be discretized, and the global
assembling leads to the following set of linear algebraic equations:

(36)

In the above matrices and vector, the partitioning is set forth by subscripts b and d, referring to the system
degrees of freedom and standing for boundary and domain, respectively. In order to make the computation
more efficient, kinematic condensation of non-domain degrees of freedom is performed:

ðKdd � KdbðKbbÞ
�1Kbd Þdd ¼ o2Mdddd . (37)

The natural frequencies of the structure considered can be determined by making the following determinant
equal zero:

ðKdd � KdbðKbbÞ
�1Kbd Þ � o2Mdd

�� �� ¼ 0. (38)

4. Numerical applications

Based on the above derivations, in the present paragraph some results and considerations about the free
vibration problem of multi-stepped circular arches in undamaged and damaged configurations with different
boundary conditions are presented. The analysis has been carried out by means of analytical and numerical
procedures illustrated above in order to validate the reliability of the numerical approach, when a large
number of natural frequencies need to be evaluated, and also to emphasize how the frequencies of the
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Table 1

Physical parameters used in the analysis of free vibrations of the stepped arches being considered

Parameter Value

Density of mass r 7850 kg/m3

Young’s modulus E 2.06� 1011 Pa

Poisson coefficient n 0.3

Shear factor w 1.2

Table 2

Comparison between analytical and numerical frequencies for a three-stepped circular arch in undamaged configuration with radius

R ¼ 1m, width b ¼ 0:045m, different constant thicknesses hð1Þ ¼ 0:020m; hð2Þ ¼ 0:015m; hð3Þ ¼ 0:020m and sweep angles

Wð1Þ � Wð0Þ ¼ 30�, Wð2Þ � Wð1Þ ¼ 60�, Wð3Þ � Wð2Þ ¼ 30�

Mode order Hinged–hinged Clamped–clamped

Analytical (Hz) GDQE (Hz) Error (%) Analytical (Hz) GDQE (Hz) Error (%)

1 27.564 27.564 0.000 49.535 49.535 0.000

2 74.838 74.838 0.000 99.224 99.224 0.000

3 140.321 140.321 0.000 178.742 178.742 0.000

4 215.215 215.215 0.000 261.989 261.989 0.000

5 313.167 313.167 0.000 366.855 366.855 0.000

6 432.367 432.367 0.000 485.004 485.004 0.000

7 576.539 576.539 0.000 646.009 646.009 0.000

8 698.877 698.879 0.000 732.315 732.321 0.001

9 823.817 823.815 0.000 865.512 865.512 0.000

10 882.598 882.603 0.001 969.683 969.694 0.001

Material properties are reported in Table 1. Collocation adopted: NðeÞ ¼ 21 for each of the three portions.

Table 3

Comparison between analytical and numerical frequencies for a three-stepped circular arch in damaged configuration with one crack and

with the same geometrical and mechanical proprieties as the arch considered in Table 2

Mode order Hinged–hinged Clamped–clamped

Analytical (Hz) GDQE (Hz) Error (%) Analytical (Hz) GDQE (Hz) Error (%)

1 27.564 27.564 0.000 49.535 49.535 0.000

2 74.397 74.397 0.000 98.603 98.603 0.000

3 140.321 140.321 0.000 178.742 178.742 0.000

4 214.005 214.005 0.000 260.529 260.529 0.000

5 313.167 313.167 0.000 366.855 366.855 0.000

6 429.709 429.709 0.000 482.111 482.111 0.000

7 576.539 576.539 0.000 646.009 646.009 0.000

8 695.638 695.641 0.000 730.251 730.257 0.001

9 822.885 822.883 0.000 862.631 862.631 0.000

10 882.598 882.603 0.001 969.683 969.694 0.001

Angular coordinate of the damage: W� ¼ 60�. Stiffness of the spring: K ¼ 217:31 kNm. Collocation adopted: NðeÞ ¼ 21 for each of the

four portions.
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multi-stepped circular arches vary when one or more cracks, with different damage severity, appear. The
mechanical characteristics for the considered arches are listed in Table 1. Various types of rectangular cross-
section stepped arches, with constant width b ¼ 0:045m and constant radius R ¼ 1m, are considered.

Tables 2–5 show the first 10 eigenfrequencies, in Hz, for a three-stepped arch having the same geometrical
characteristics and different damage configurations with hinged–hinged and clamped–clamped boundary
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Table 4

Comparison between analytical and numerical frequencies for a three-stepped circular arch in damaged configuration with one crack and

with the same geometrical and mechanical proprieties as the arch considered in Table 2

Mode order Hinged–hinged Clamped–clamped

Analytical (Hz) GDQE (Hz) Error (%) Analytical (Hz) GDQE (Hz) Error (%)

1 27.564 27.564 0.000 49.535 49.535 0.000

2 73.023 73.023 0.000 96.683 96.683 0.000

3 140.321 140.321 0.000 178.742 178.742 0.000

4 210.374 210.374 0.000 256.179 256.179 0.000

5 313.167 313.167 0.000 366.855 366.855 0.000

6 422.035 422.035 0.000 473.838 473.838 0.000

7 576.539 576.539 0.000 646.009 646.009 0.000

8 686.489 686.491 0.000 724.243 724.249 0.001

9 820.419 820.417 0.000 854.967 854.967 0.000

10 882.598 882.603 0.001 969.683 969.694 0.001

Angular coordinate of the damage: W� ¼ 60�. Stiffness of the spring: K ¼ 49:62 kNm. Collocation adopted:NðeÞ ¼ 21 for each of the four

portions.

Table 5

Comparison between analytical and numerical frequencies for a three-stepped circular arch in damaged configuration with two cracks and

with the same geometrical and mechanical proprieties as the arch considered in Table 2

Mode order Hinged–hinged Clamped–clamped

Analytical (Hz) GDQE (Hz) Error (%) Analytical (Hz) GDQE (Hz) Error (%)

1 26.647 26.647 0.000 48.885 48.885 0.000

2 71.170 71.170 0.000 93.936 93.936 0.000

3 139.821 139.821 0.000 176.359 176.359 0.000

4 209.457 209.457 0.000 256.179 256.179 0.000

5 304.740 304.740 0.000 361.323 361.323 0.000

6 410.976 410.976 0.000 460.399 460.399 0.000

7 571.880 571.880 0.000 634.036 634.036 0.000

8 685.968 685.970 0.000 724.227 724.233 0.001

9 819.677 819.675 0.000 850.859 850.859 0.000

10 865.942 865.947 0.001 963.026 963.035 0.001

Angular coordinates of the damages: Wð1
�Þ
¼ 30�, Wð2

�Þ
¼ 60�. Stiffness of the springs: K ¼ 49:62kNm. Collocation adopted:NðeÞ ¼ 21 for

each of the four portions.
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conditions. The two arch portions near the ends are characterized by the same thickness, hð1Þ ¼ hð3Þ ¼ 0:020m,
and the same sweep angle, Wð1Þ � Wð0Þ ¼ Wð3Þ � Wð2Þ ¼ 30�, while the middle one has the thickness hð2Þ ¼ 0:015m

and the sweep angle Wð2Þ � Wð1Þ ¼ 60�. The full amplitude of the symmetric arch considered is Y ¼ 120�.
In particular, Table 2 presents the results for the undamaged arch, while Tables 3 and 4 show the

comparison of the frequencies when only one crack of increasing intensity appears at the middle cross-section.
The stiffness of the rotational spring can be expressed in terms of the crack depth in the following form:

K ¼
EID

EI � EID

EI

RDW
, (39)

where EID is the bending stiffness of the notched cross-section and its length can be approximated by the
relation RDW ¼ h=a, with affi 2 [30]. In the applications crack depth equal to d ¼ 5:0mm in Table 3, and
equal to d ¼ 7:5 mm in Table 4, have been considered. The corresponding stiffness values are K ¼ 217:31 and
49.62 kNm, respectively. Finally, in Table 5 the frequencies of the same arch with two cracks having equal
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severity of damage K ¼ 49.62 kNm, one in the middle cross-section, and the other at the interface between the
first two adjacent portions, are reported.

For all the cases examined, it is evident that the GDQE technique produces coincident results when
compared with the analytical technique, using only a few sampling points in each sub-domain. The same
number of grid points NðeÞ ¼N ¼ 21 is considered in each portion. In particular, Tables 1–7 present well-
converging numerical results obtained with the GDQE approach.

Concerning the influence of damages on the dynamic parameters of the system, it is known that, in general,
the frequency variations increase with the damage severity, in other words when the elastic stiffness K

decreases. However, if the crack is located in a zero sensitivity point for a given mode order, the corresponding
frequency does not change, see for instance Tables 3 and 4. The zero sensitivity points are those points at
which bending modal shape is equal to zero.

In Tables 6 and 7, the first 10 eigenfrequencies for a three-stepped arch having clamped–free boundary
conditions are shown. The three arch portions are characterized by the thicknesses hð1Þ ¼ 0:030m,
hð2Þ ¼ 0:025m, hð3Þ ¼ 0:015m and the sweep angles, Wð1Þ � Wð0Þ ¼ 20�, Wð2Þ � Wð1Þ ¼ 20�, Wð3Þ � Wð2Þ ¼ 30�,
respectively. In Table 6 we have considered an arch in undamaged and damaged configuration with a crack at
the interface between the first two adjacent portions and K ¼ 49:62 kNm. Moreover, in Table 7 we have
added another crack of the same severity in the middle of the second portion. The results are always in good
agreement and the previous considerations can be easily extended. Furthermore, in order to verify the
reliability and the accuracy of the numerical procedure, Table 8 presents a comparison between the analytical
results presented by Tufekci and Ozdemirci [51] and the GDQE results obtained considering the same number
of grid points NðeÞ ¼N ¼ 21 for each portion. The GDQE technique produces results in agreement with the
analytical technique [51] for all the cases analysed. It is worth noting that the accuracy of numerical solution
depends on the number of sampling points used to discretize each portion. In fact, increasing the number of
sampling points NðeÞ, the numerical solution converges to the analytical solution [51], as can be seen in
Table 9. Furthermore, the converging rate and the accuracy stability of some natural frequencies for multi-
stepped and multi-damaged arches are shown in Figs. 4–10. Well converging results for the first 10 frequencies
can be obtained using NðeÞ ¼N ¼ 21 for each portion. It is shown that the accuracy of the numerical
solution stays steady with increasing N and does not decrease due to the numerical instabilities even if N
becomes too large. For all the cases treated, the GDQE technique is stable if the number of grid points
increases. As shown in all the figures under consideration, to obtain accurate results for the higher frequencies,
Table 6

Comparison between analytical and numerical frequencies for a three-stepped circular arch in undamaged and damaged configurations

with centroidal axis radius R ¼ 1m, width b ¼ 0:045m, different constant thicknesses hð1Þ ¼ 0:030m; hð2Þ ¼ 0:025m; hð3Þ ¼ 0:015m and

sweep angles, Wð1Þ � Wð0Þ ¼ 20�, Wð2Þ � Wð1Þ ¼ 20�, Wð3Þ � Wð2Þ ¼ 30�

Mode order Clamped–free

Undamaged One damage

Analytical (Hz) GDQE (Hz) Error (%) Analytical (Hz) GDQE (Hz) Error (%)

1 20.433 20.433 0.000 17.342 17.342 0.000

2 67.978 67.978 0.000 67.878 67.878 0.000

3 195.761 195.761 0.000 175.919 175.919 0.000

4 372.498 372.498 0.000 340.394 340.394 0.000

5 643.913 643.913 0.000 625.109 625.109 0.000

6 928.625 928.625 0.000 925.873 925.873 0.000

7 1312.164 1312.164 0.000 1199.618 1199.618 0.000

8 1478.623 1478.623 0.000 1478.101 1478.101 0.000

9 1740.342 1740.342 0.000 1637.069 1637.069 0.000

10 2262.455 2262.455 0.000 2190.763 2190.763 0.000

Angular coordinates of the damage: W� ¼ 20�. Stiffness of the spring: K ¼ 49:62kNm. The material properties are reported in Table 1.

Collocation adopted: NðeÞ ¼ 21 for each portion.
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Table 8

Comparison between analytical [51] and numerical frequencies for two-stepped circular arches in undamaged configuration

Clamped–free (Hz) fT ¼ Y ¼ 120� fT ¼ Y ¼ 180�

Analytical [51] GDQE Error (%) Analytical [51] GDQE Error (%)

c=fT ¼ �0:2 1 105.78 105.78 0.00 52.29 52.29 0.00

2 388.71 388.71 0.00 147.89 147.89 0.00

3 1223.03 1223.03 0.00 485.49 485.49 0.00

4 2522.58 2522.58 0.00 1073.31 1073.31 0.00

5 4071.74 4071.74 0.00 1825.23 1825.23 0.00

6 5090.80 5090.80 0.00 2735.94 2735.94 0.00

c=fT ¼ 0 1 113.80 113.80 0.00 56.57 56.57 0.00

2 405.31 405.31 0.00 155.10 155.10 0.00

3 1276.94 1276.94 0.00 504.88 504.89 0.00

4 2557.02 2557.01 0.00 1087.61 1087.61 0.00

5 4159.28 4159.28 0.00 1892.28 1892.28 0.00

6 5223.89 5223.89 0.00 2839.25 2839.25 0.00

c=fT ¼ 0:2 1 113.53 113.53 0.00 56.28 56.28 0.00

2 447.71 447.71 0.00 171.75 171.75 0.00

3 1312.76 1312.76 0.00 521.28 521.28 0.00

4 2652.00 2652.00 0.00 1129.44 1129.44 0.00

5 4341.77 4341.76 0.00 1986.86 1986.86 0.00

6 5230.66 5230.66 0.00 2963.95 2963.95 0.00

Material and geometric properties of the above two-stepped arches are illustrated in Ref. [51]. Collocation adopted: NðeÞ ¼ 21 for each

portion.

Table 7

Comparison between analytical and numerical frequencies for a three-stepped circular arch in undamaged and damaged configurations

with two cracks and with the same geometrical and mechanical properties as the arch considered in Table 6

Mode order Clamped–free

Undamaged Two damages

Analytical (Hz) GDQE (Hz) Error (%) Analytical (Hz) GDQE (Hz) Error (%)

1 20.433 20.433 0.000 16.274 16.274 0.000

2 67.978 67.978 0.000 65.585 65.585 0.000

3 195.761 195.761 0.000 165.932 165.932 0.000

4 372.498 372.498 0.000 330.708 330.708 0.000

5 643.913 643.913 0.000 532.080 532.080 0.000

6 928.625 928.625 0.000 900.476 900.476 0.000

7 1312.164 1312.164 0.000 1130.762 1130.762 0.000

8 1478.623 1478.623 0.000 1475.961 1475.961 0.000

9 1740.342 1740.342 0.000 1575.733 1575.733 0.000

10 2262.455 2262.455 0.000 2189.364 2189.364 0.000

Angular coordinates of the damages: Wð1
�Þ
¼ 20�, Wð2

�Þ
¼ 30�. Stiffness of the springs: K ¼ 49:62kNm. Collocation adopted:NðeÞ ¼ 21 for

each portion.

E. Viola et al. / Journal of Sound and Vibration 299 (2007) 143–163 157
the number of sampling points must not be too large. Moreover, Figs. 4–10 show that the converging rate of
the numerical solutions also depends on the boundary conditions. Based on the reliable results presented in
this paper, the numerical approach can be used to solve the problem of multi-stepped and multi-damaged
arches in an accurate manner.
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Table 9

Comparison between analytical [51] and numerical frequencies for two-stepped circular arches in undamaged configuration for different

grid distributions NðeÞ in each portion

Clamped–free Frequencies (Hz)

fT ¼ Y ¼ 120� Analytical

[51]

GDQE

NðeÞ ¼ 7

GDQE

NðeÞ ¼ 9

GDQE

NðeÞ ¼ 11

GDQE

NðeÞ ¼ 13

GDQE

NðeÞ ¼ 15

GDQE

NðeÞ ¼ 17

c=fT ¼ �0:2 1 105.78 107.67 105.77 105.78 105.78 105.78 105.78

2 388.71 389.98 388.65 388.71 388.71 388.71 388.71

3 1223.03 1198.45 1223.84 1223.01 1223.03 1223.03 1223.03

4 2522.58 2417.85 2549.38 2520.98 2522.64 2522.58 2522.58

5 4071.74 4071.37 4141.89 4065.92 4072.10 4071.73 4071.74

6 5090.80 5095.46 5124.46 5087.93 5091.01 5090.80 5090.80

c=fT ¼ 0 1 113.80 114.12 113.80 113.80 113.80 113.80 113.80

2 405.31 406.78 405.32 405.31 405.31 405.31 405.31

3 1276.94 1285.46 1276.69 1276.94 1276.94 1276.94 1276.94

4 2557.01 2547.67 2557.16 2557.01 2557.01 2557.01 2557.01

5 4159.28 4068.87 4172.19 4158.68 4159.29 4159.28 4159.28

6 5223.89 5172.37 5236.89 5223.17 5223.92 5223.89 5223.89

c=fT ¼ 0:2 1 113.53 113.62 113.53 113.53 113.53 113.53 113.53

2 447.71 452.57 447.64 447.71 447.71 447.71 447.71

3 1312.76 1324.89 1312.21 1312.77 1312.76 1312.76 1312.76

4 2652.00 2656.72 2657.71 2651.75 2652.01 2652.00 2652.00

5 4341.76 4356.95 4358.27 4340.71 4341.81 4341.76 4341.76

6 5230.66 5454.61 5251.56 5229.40 5230.77 5230.66 5230.66

Material and geometric properties of the above two-stepped arches are illustrated in Ref. [51].

Fig. 4. Convergence and stability characteristics of the first 10 frequencies for multi-stepped hinged–hinged circular arch considered in

Table 2.
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5. Conclusions

In this paper, two different approaches for the study of free harmonic in-plane vibrations of multi-stepped
and multi-damaged circular arches have been presented. The analytical solution is based on the Euler
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Fig. 5. Convergence and stability characteristics of the first 10 frequencies for multi-stepped clamped–clamped circular arch considered in

Table 2.

Fig. 6. Convergence and stability characteristics of the first 10 frequencies for multi-stepped hinged–hinged circular arch considered in

Table 4.

E. Viola et al. / Journal of Sound and Vibration 299 (2007) 143–163 159
characteristic exponent procedure involving the roots of characteristic polynomials. On the other hand, the
numerical method is focused on the GDQE method. It should be noted that, in the present paper, in deriving
the differential equations of motion for each arch portion, equilibrium relations, congruence relations and
constitutive relations are combined in a second-order differential equation system considering rotatory inertia,
axial extension and transverse shear effects. The solution in terms of radial displacement, tangential
displacement and rotation has been derived from the coupled system of three partial differential equations.
Multi-stepped arches are considered with different boundary conditions. Several undamaged and damaged
configurations have been investigated, modelling the cracked cross-section as an elastic rotational spring. As
presented, both methods show to be accurate in predicting natural frequencies, and can be conveniently
adopted in localizing a cracked cross-section by modal parameter measures.
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Fig. 7. Convergence and stability characteristics of the first 10 frequencies for multi-stepped clamped–clamped circular arch considered in

Table 4.

Fig. 8. Convergence and stability characteristics of the first 10 frequencies for multi-stepped hinged–hinged circular arch considered in

Table 5.
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The GDQE method provides a very simple algebraic formula for determining the weighting coefficients
required by the DQ approximation without restricting in any way the choice of mesh grids. Examples
presented show that the GDQE method can produce accurate results using only a small number of sampling
points. The present method provides converging results for all the cases treated. Fast convergence and very
good stability have been shown. Furthermore, discretizing and programming procedures are quite easy.

As far as the dynamic behaviour of structures containing damages is concerned, the topic of damage
localization will be discussed briefly. In damage detection problems, two stages have to be taken into account:
the localization of the damage and its magnitude or severity. Various objective functions may be considered
that account for the difference between analytical and experimental quantities. It is worth noting that
modelling and experimental errors will always complicate the problem when trying to reach the exact solution.
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Fig. 9. Convergence and stability characteristics of the first 10 frequencies for multi-stepped clamped–clamped circular arch considered in

Table 5.

Fig. 10. Convergence and stability characteristics of the first 10 frequencies for multi-stepped clamped–free circular arch considered in

Table 7.
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The identification procedure is generally based on the minimization of an objective function [35]. Using
dynamic methods for damage localization, changes in natural frequency can be considered as the diagnostic
tool. Frequencies can be measured more easily than mode shapes and are usually less affected by experimental
errors. When experimental data are used, and the numerical model is reliable, the localization of damage can
be accurate, though some discrepancies may remain in its quantification, depending on which frequencies are
selected from those available. It should be noted that the dynamic techniques have become a viable tool of
structural analysis, because of the remarkable progress in the acquisition and treatment of experimental data
that have characterized the final decades of the last century.
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However, attention has to be addressed to the fact that the identification problems present pathologies and
difficulties typical of inverse problems, and this hinders a blind use of the above-mentioned techniques. The
presence of non-uniqueness, the lack of stability estimates, etc., make it difficult to do without extra
information in analysing the problem of crack localization under discussion. When taking a look at the
research activity which has been developed along the years, one is surprised by the huge amount of work done,
but one also notices a progressive improvement in the level of awareness of the subtleties involved in this kind
of problems [52]. The general properties of identification problems, with specific regard to the sensitivity of
natural frequencies to damage, the accuracy of the data, the interpretation model, the determination of
‘‘minimal sets’’ of data needed for the reconstruction of localized damages, should always be studied.
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